E4 - Fission

Oxford solution

Worked example 1

In neutron-induced fission, a nucleus of uranium-235 $\binom{235}{92}$ U) absorbs a neutron and yields a nucleus of xenon-140 $\binom{140}{56}$ Xe) and a nucleus of strontium-94 $\binom{94}{38}$ Sr), according to the reaction

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{140}_{54}Xe + ^{94}_{38}Sr + x^{1}_{0}n$$

Calculate the number of neutrons released in the reaction.

The atomic masses of the nuclides are given in the table.

- b. Calculate, in MeV, the energy released in the reaction.
- Estimate, in J, the nuclear energy transferred when 1.0 kg of pure uranium-235 undergoes fission.

Nuclide	Atomic mass		
²³⁵ ₉₂ U	235.0439u		
¹⁴⁰ Xe	139.9216 u		
⁹⁴ ₃₈ Sr	93.9154u		

Worked example 2

Xe-140 and Sr-94 produced in neutron-induced fission of uranium-235 in Worked example 1 are radioactive and undergo further decays. The stable end products of their respective chains of decays are cerium-140 ($^{140}_{58}$ Ce) and zirconium-94 ($^{94}_{40}$ Zr).

a. Explain why the combined proton number of Ce-140 and Zr-40 is different from the proton number of U-235.

The binding energies per nucleon are given in the table.

 Calculate, in MeV, the total energy released as a result of this fission reaction of U-235.

Nuclide	Binding energy / A	
²³⁵ ₉₂ U	7.591 MeV	
¹⁴⁰ ₅₈ Ce	8.376 MeV	
⁹⁴ ₄₀ Zr	8.667 MeV	

1. Consider the neutron-induced fission reaction

$$^{235}_{92}$$
U + $^{1}_{0}$ n $\rightarrow ^{144}_{56}$ Ba + $^{89}_{36}$ Kr + $^{3}_{0}$ n

The following data are given about the binding energies per nucleon of these nuclides.

Nuclide	Binding energy / A	
²³⁵ ₉₂ U	7.591 MeV	
¹⁴⁴ ₅₆ Ba	8.265MeV	
⁸⁹ ₃₆ Kr	8.615 MeV	

- a. Calculate, in J, the energy released in the reaction.
- b. Estimate the fraction of the mass of uranium-235 converted to energy in this reaction.
- A nuclear power station outputs 1.3 GW of electrical power. Use your answer in part b. to estimate the mass of uranium-235 that undergoes

fission in one day. Assume that the overall efficiency of nuclear to electrical energy transfer in this power station is 0.30.

2. Consider neutron-induced fission of plutonium-239,

$$^{239}_{94}Pu + ^{1}_{0}N \rightarrow ^{134}_{54}Xe + ^{103}_{40}Zr + x^{1}_{0}N$$

- State the number of neutrons released in this reaction.
- b. Calculate, in MeV, the energy released. The following data are available for this question.

Nuclide	Atomic mass	
²³⁹ ₉₄ Pu	239.0522 u	
¹³⁴ Xe	133.9054 u	
¹⁰³ Zr	102.9272 u	

W/1 - pga) $235 + 1 = 140 + 94 + x \Rightarrow x = 2$ { 235 \(\tau + 19 \) \\ 92 \\ 93 \\ 18 \\ 1 mu+mn -> mx + msr + zimn => In=Mn - Mxc -Mx- Mn } sm= 235 - 139.9216 - 93-915 - 1'WF7 = 0-1982 W E = BM x 931-5 MeV = 0-1982 ×931.5 = 184.6 MeV. c) fraction of Maniam converted into energy = 0.1982 = 8.4 × 10-9 235.0439 1 kg -5 / X 8.4 × 10-9 kg will be converted trongford = mc2 = 8.4 × 10 × (3×108) 2 $= 7.6 \times 10^{13} \text{ J}$

$$ω|_{2} \rightarrow lg$$
 671

α) Then would have been both duray.

b) $AE = 140 (8.376) + 94 (8.617) - 215(7.591)$
 $= 203.5 \text{ MeV}$
 $|_{1} \rightarrow lg 671$
 $|_{2} \rightarrow lg 71$
 $|_{2} \rightarrow lg 71$
 $|_{2} \rightarrow lg 71$
 $|_{2} \rightarrow lg 71$

= 7.9 X10-4

= S.147

= 5.119

1/2 - 19 671

239 N + h -> 134 Xe + 2r + Xh

a) 239 + 1 = 134 + 103 + 1

 $b) \Delta m = 239.0522 - 133.9054 - 102.9272$ -2(1.0087)

sm = 0-2022 W

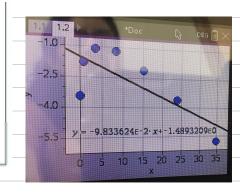
E= bm x 931-5 = 6-2022 x 931-5

Data based. Questions.

Page 668

Data-based questions

The number of neutrons produced from the fission of U-235 varies. The table below gives the probability *P* of different numbers of neutrons *N* being released.


N	P
0	0.033
1	0.174
2	0.335
3	0.303
4	0.123
5	0.028
6	0.003

- Calculate the average number of neutrons emitted (express your answer to 1 decimal place).
- Theory suggests that $\ln P = k(N-N_{ov})^2 + A$ where N_{ov} is the average number of neutrons emitted and k and A are constants. Plot a graph of $\ln P$ against $(N-N_{ov})^2$ to test this theory.
- Use your graph to find values of k and A. Hence, find the probability of a fission reaction

Data from N. Eraslin: The Origin of Neutron Radiation

N		Р	Inp	(N -N _a) ²
	0	0.033	-3.411	1.21 x 10 ⁻²
	1	0.174	-1.748	7.92 x 10 ⁻¹
	2	0.335	-1.093	3.57 x 10 ^o
	3	0.303	-1.194	8.35 x 10 ^o
	4	0.123	-2.095	1.51 x 10 ¹
	5	0.028	-3.575	2.39 x 10 ¹
	6	0.003	-5.809	3.46 x 10 ¹
Av		0.11		

 $\int_{0}^{\infty} d^{2} N = 7$ $= 4.74 \times 10$ = 100 = -6.141 = 100 = 7.00215 $\therefore \int_{0}^{\infty} d^{2} N = 7.00215$

ly of Regression

Inf = W(N-Na)+A

Compare with

y= mx+C

Inf= -0.098(N-Na)+

-1.489