Question 1

A planet has double the mass of Earth and half its radius. What is the gravitational field strength on the surface of the planet?

- a. 10 N kg⁻¹
- b. 20 N kg⁻¹
- c. 40 N kg⁻¹
- d. 80 N kg⁻¹

Ans - d

Question 2

In Newton's universal law of gravitation, the masses are assumed to be

- a. Extended masses
- b. Point masses
- c. Masses of planets
- d. Spherical masses.

Ans - b

Question 3

Gravitational field strength at a point may be defined as

- a. The work done per unit mass to move a small mass from infinity to the point
- b. The force on a small mass placed at the point
- c. The force per unit mass on a small mass placed at the point
- d. The work done to move unit mass from infinity to the point

Ans - c

Question 4

The Earth is distance Rm from the Moon and the distance Rs from the Sun. The ratio gravitational field strength at the Earth due to the Moon

gravitational field strength at the Earth due to the Sun

Is proportional to which of the following:

a.
$$\frac{Rm^2}{Rs^2}$$

b.
$$\frac{Rm}{Rs}$$

C.
$$\frac{Rs^2}{Rm^2}$$

d.
$$\frac{RS}{Rm}$$

Ans - c

Question 5

Planet X has radius r and mass m. Planet Y has radius 2r and mass 8m. Which of the following is the correct value of the ratio.

gravitational field strength at surface of planet X gravitational field strength at surface of planet Y?

- a. 0.5
- b. 2
- c. 4
- d. 0.25

Ans - a

Question 6

Mass of the Moon is 7.35×10^{22} kg and the radius of the Moon is 1.74×10^6 m. The escape speed from the surface of the moon is

- a. 4.37 x 10³ ms⁻¹
- b. 2.37 x 10⁴ ms⁻¹
- c. 2.37 x 10⁻³ ms⁻¹
- d. $2.37 \times 10^3 \text{ ms}^{-1}$

Ans - d

Question 7

A space probe of mass 640 kg is to be launched from the surface of the earth. The energy needed to move the probe from the surface to a parking orbit at a height of 500 Km is:

Radius of Earth is $6.37 \times 10^6 \, \text{m}$, mass of Earth is $5.97 \times 10^{24} \, \text{kg}$

- a. $2 \times 10^9 \text{ J}$
- b. $2 \times 10^{10} \text{ J}$
- c. 2 x 10⁸ J
- d. $2 \times 10^{11} \text{ J}$

Ans - b

Question 8

The escape speed of the Earth is related to the gravitational field strength (g) of the Earth with the following relation

IBDP - D1 - MCQ

- a. $\sqrt{5gr}$
- b. $\sqrt{2gr}$
- c. $\sqrt{3gr}$
- d. $\sqrt{4gr}$

Ans - b

Question 9

Which statement is true regarding the gravitational field strength inside the Earth and outside the surface of the earth

- a. g is constant both inside the Earth and outside the Earth
- b. g varies as $\frac{1}{r}$ inside the Earth and as $\frac{1}{r^2}$ outside the Earth's surface.
- c. g varies as $\frac{1}{r^2}$ inside the Earth's surface and as $\frac{1}{r}$ outside the Earth's surface.
- d. g varies as $\frac{1}{r^2}$ both inside and outside the surface of the Earth.

Ans - b

References
IBDP Physics Cambridge
IBDP physics Oxford